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In this research, a new wavelet artificial neural network (WANN) model was proposed for daily suspended
sediment load (SSL) prediction in rivers. In the developed model, wavelet analysis was linked to an artificial
neural network (ANN). For this purpose, daily observed time series of river discharge (Q) and SSL in Yadkin
River at Yadkin College, NC station in the USA were decomposed to some sub-time series at different levels by
wavelet analysis. Then, these sub-time series were imposed to the ANN technique for SSL time series
modeling. To evaluate the model accuracy, the proposed model was compared with ANN, multi linear
regression (MLR), and conventional sediment rating curve (SRC) models. The comparison of prediction
accuracy of the models illustrated that the WANN was the most accurate model in SSL prediction. Results
presented that the WANN model could satisfactorily simulate hysteresis phenomenon, acceptably estimate
cumulative SSL, and reasonably predict high SSL values.
ahoo.com.
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1. Introduction

The modeling and prediction of river suspended sediment are key
elements in the global water recourses and environment policy and
management. The prediction of SSL which is a nonlinear and complex
phenomenon is not a simple task. In the past decades, numerous
studies have been conducted in the modeling of sediment processes.
Commonly, mathematical models are employed for this object
(Verstraeten and Poesen, 2001; Ward et al., 2009); which these
techniques usually need a lot of data and a long response time. Studies
have been conducted to reduce the complexities of the problem in
terms of developing practical techniques that do not require dwell on
algorithm and theory. In this way classic models such asMLR and SRCs
are widely used for suspended sediment modeling (Kisi, 2005).
However, they are basically linear models assuming that data are
stationary, and have a limited ability to capture non-stationarities and
non-linearities in hydrological and environmental data. In recent
years, the use of artificial intelligence approaches is increasing due to
their capability. In the field of water resources and environmental
engineering, ANN models have recently been applied to pesticide
contamination modeling in shallow groundwater (Sahoo et al., 2006),
simulation of polluted stream (Kim et al., 2008), estimation of scour
depth near pile groups (Zounemat-Kermani et al., 2009), and
forecasting of ozone episode days (Tsai et al., 2009).

On behalf of river sediment prediction, using artificial intelligence
approaches, ANN employment has been studied recently (Nagy et al.,
2002; Bhattacharya et al., 2005; Raghuwanshi et al., 2006; Zhu et al.,
2007; Alp and Cigizoglu, 2007). The characteristics of these researches
are presented in Table 1. Nagy et al. (2002) developed an ANN model
to estimate suspended sediment concentration (SSC) in rivers,
achieved by training the ANN model to extrapolate several stream
data collected from reliable sources. The network was set up using
several parameters, such as Froude number, stream width ratio,
mobility number and Reynolds number, as the input pattern and the
SSC as the output pattern. A comparison among the ANN model and
several commonly used sediment discharge formulas was performed
on 80 data observations. A discrepancy ratio Dr=Cc/Cm was used for
comparison, where Cc is the calculated and Cm is the measured total
load concentration. In model testing, ANN's results are better than
other commonly used sediment discharge formulas. The discrepancy
ratio for ANN was 1.04, where as this parameter was 2.34 and 0.41 for
Engelund and Hansen (1967) and Toffaleti (1969) formulas, respec-
tively. Bhattacharya et al. (2005) provided an algorithm for develop-
ing a data-driven method to forecast sediment transport (total) rates
using ANN. Published flume and field data from several researchers
have been employed to build the ANNmodel. The predictive accuracy
of the model was found to be better than well-known sediment
transport models such as Engelund and Hansen. Raghuwanshi et al.
(2006) proposed an ANN model to runoff and sediment yield
modeling in Nagwan watershed in India. A five-year data set was
employed for training and a two-year data set was considered for
testing the model. Linear regression based daily and weekly runoff
and sediment yield prediction models were also developed using the
above training data set and were tested using the testing data set. The
ANN models performed better than the linear regression models in
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Table 1
Some illustrative reviews of ANN applications in sediment modeling.

Authors Temporal
scale

Case study Time period Independent variables Dependent variable

Nagy et al., 2002 Niobrara River, Middle Loup River,
Hii River, Rio Grande River,
Mississippi River and Sacramento River

Experimental data Froude number, stream width ratio,
Reynolds number, shear velocity
and the depth ratio

Total load concentration
(ppm)

Bhattacharya et al.,
2005

55 flume and 24 field datasets Experimental data Water depth, flow velocity, particle
size and energy slope

Dimensionless total
transport rate

Raghuwanshi et al.,
2006

Daily and
weekly

Nagwan watershed, Hazaribagh,
Jharkhand, India

(June to October), data from
1991–1997

Rainfall and temperature Runoff (mm) and
sediment yield (ton/ha)

Zhu et al., 2007 Monthly Longchuanjiang River, the Upper
Yangtze Catchment, China

1960 to
2001

Average rainfall, temperature,
rainfall intensity and water
discharge

Suspended sediment
flux (kg/s)

Alp and Cigizoglu,
2007

Daily Juniata River, Pennsylvania, USA 1 January 1983 to 7 June 1989 Rainfall flow and SSL SSL (ton/day)

Rajaee et al., 2009 Daily Little Black River (LBR) and Salt River
(SR) stations, Missouri State, USA

October 1, 1980 to September 30,
1984 (in LBR) October 1, 1984 to
September 30, 1988 (in SR)

River discharge and SSC SSC (mg/l)

Rajaee, 2010 Daily Potomac River at Point of Rocks, MD
gauging station, USA

October 1, 1960 to September 30,
1989

River discharge and SSL SSL (ton/day)
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predicting both runoff and sediment yield on a daily and weekly
simulation scale. Zhu et al. (2007) proposed an ANN model for
simulating the monthly suspended sediment flux in the Long-
chuanjiang River in China. In the mentioned model, suspended
sediment fluxwas related to the average rainfall, temperature, rainfall
intensity, and flow discharge. Results illustrated that the ANN model
is capable of simulating monthly suspended sediment flux with fairly
good accuracy concerning proper variables and their correlation to the
previous month (lagging effect) on the suspended sediment flux. In
the research performed by Alp and Cigizoglu (2007), the relation
between hydrometeorological variables (rainfall and flow) and total
daily suspended sediment load was evaluated using two ANN
methods; feed forward back propagation and radial basis function
techniques. The ANNs were trained using rainfall flow and suspended
sediment load data from the Juniata catchment in the USA. The ANN
models provided satisfying results in terms of the selected perfor-
mance criteria comparing with conventional multi linear
regression. Rajaee et al. (2009) studied ANN, MLR, and SRC models
for daily simulation of SSC in two hydrometry stations. The models
were trained using daily river discharge and SSC data belonging to
Little Black River and Salt River gauging stations in the USA.
Comparison of the models' results indicated that the ANN model
had more ability in predicting SSC in comparison with the MLR and
SRC models. Furthermore, the results indicated that the ANN model
could reasonably estimate cumulative SSL and acceptably simulate
hysteresis phenomenon. In another study, Rajaee (2010) proposed a
model by combining the wavelet analysis and neuro-fuzzy (NF)
approach to predict daily suspended sediment in a gauging station in
the USA. In the developed model, daily observed time series of river
discharge and suspended sediment were decomposed to some sub-
time series. Obtained results showed that the proposed model per-
forms better than the NF and SRC models in prediction of suspended
sediment.

Wavelet analysis, which provides information in both the time and
frequency domains of the signal, gives considerable insight into the
physical form of the data. Wavelet analysis has been applied to a
number of problems in water resources and environmental engineer-
ing, including rainfall–runoff modeling in a karstic watershed (Labat
et al., 1999), river flow modeling (Pasquini and Depetris, 2007),
meteorological pollution simulation (Osowski and Garanty, 2007),
characterization of daily stream flow (Saco and Kumar, 2000), and
open channel wake flows analysis (Addison et al., 2001). It has been
found that an appropriate data pre-processing which employs
wavelet analysis can lead to models that more sufficiently represent
the true characteristics of the underlying system.
ANN and wavelet analysis are presented to be successful when
they are applied individually to water resources and environmental
problems. Recently, there has been a growing interest in combined
methods. Some research has proposed hybrid wavelet–ANN models.
Kim and Valdes (2003) provided a wavelet–ANN model to predict
droughts in Mexico. Cannas et al. (2005) proposed a hybrid wavelet–
ANN model for monthly rainfall–runoff modeling in Italy and
Tantanee et al. (2005) proposed a coupled wavelet-autoregressive
model for annual rainfall prediction. Cannas et al. (2006) studied the
effects of data pre-processing on the ANN model performance using
continuous and discrete wavelet transforms. Each of these researches
showed that the ANNs calibratedwith the pre-processed data resulted
in better efficiency in comparison to the ANNs which were calibrated
with un-decomposed, noisy raw time series.

According to the previously mentioned qualitative analysis, a
hybrid model for suspended sediment prediction based on wavelet
analysis and ANN is proposed and discussed in this research. The goal
of combining the wavelet analysis and ANN model is improving the
accuracy of SSL prediction. Therefore, a WANN model which uses
multi-scale signals as input data may present more reliable predic-
tions rather than a single pattern input.

The current research is a new application of the wavelet–ANN
hybrid model, which uses multi-scale signal, for prediction of SSL. The
rest of the paper is organized as following; hydrometry station and
statistical analysis are presented in Section 2. In Section 3, ANNs,
wavelet transform, MLR, SRC, and proposed WANN models are
described. The model application for a real world problem and results
are summarized at Sections 4 and 5. The summary and conclusion will
be the last section.

2. Hydrometry station and statistical analysis

2.1. Hydrometry station

The data obtained from the Yadkin River at Yadkin College, NC
gauging station (USGS Station No: 02116500, Basin Area (sq. mi.):
2280, longitude: 080°23′10″ and latitude: 35°51′24″) in Virginia State,
operated by the U.S. Geological survey (USGS), were employed to
train and test all the models developed in this paper. Fig. 1 shows the
Yadkin River and the gauging station.

The data from October 1, 1957 to September 30, 1982 (25 years;
i.e. 83% of total data) and the data from October 1, 1982 to September
30, 1987 (5 years; i.e. 17% of total data) were used for training and
testing sets, respectively. Daily time series of Q and SSL were
downloaded from the web server of the USGS (http://co.water.usgs.

http://co.water.usgs.gov/sediment/seddatabase.cfm


Fig. 1. Yadkin River at Yadkin College, NC.
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gov/sediment/seddatabase.cfm). Fig. 2 shows these time series of data
related to daily Q and SSL.

The consideration of the first 25 years of the Q and SSL time series
for the calibration set has two advantages; first, the highest observed
Q and SSL occurred during this period and second, considering
significant variations could be possible.
2.2. Statistical analysis

The statistical analysis for training and testing sets is given in
Table 2, which contains the minimum, maximum, standard deviation
(Sd), mean, skewness coefficient (Csx), lag 1 day autocorrelation
coefficient(R1), lag 2 days autocorrelation coefficient (R2), lag 3 days
autocorrelation coefficient (R3), and lag 4 days autocorrelation co-
efficient (R4).
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It should be noted that, similar to all empirical models, ANN
models perform best when they do not extrapolate beyond the range
of the data used for model training (Tokar and Johnson, 1999). From
Table 2, it could be observed that the extreme values of Q and SSL
were in the training set. When dividing the data into training and
testing subsets, it is essential to check the data which present the
same statistical population (Masters, 1993). In general, Table 2
illustrated relatively similar statistical characteristics between train-
ing and testing sets in terms of mean, standard deviation, skewness
coefficient, and autocorrelation coefficients. River discharge autocor-
relation coefficients, especially R1, were high, but SSL autocorrelation
coefficients, except for R1, were very low in both training and testing
data sets. Skewness coefficients were low for both training and testing
sets. This is appropriate for modeling, because high skewness
coefficient has a considerable negative effect on ANN performance
(Altun et al., 2007). The correlation coefficients between observed
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Table 2
Statistics analysis for training, testing and all data sets.

Statistical
parameters

All data Training set Testing set

Q (m3/day) SSL (ton/day) Q (m3/day) SSL (ton/day) Q (m3/day) SSL (ton/day)

Mean 7.68×106 2246.7 7.76×106 2345.9 7.26×106 1751
Sd 7.79×106 7324 7.76×106 7360.7 7.93×106 7118.9
Csx 6.15 8.21 6.01 7.93 6.85 9.82
Min 889,920 8.23 889,920 8.23 1,166,400 13.03
Max 161,568,000 1.648×105 161,568,000 1.648×105 133,920,000 1.206×105

R1 0.737 0.521 0.733 0.531 0.752 0.465
R2 0.437 0.189 0.43 0.2 0.468 0.125
R3 0.323 0.111 0.317 0.118 0.35 0.068
R4 0.276 0.082 0.272 0.087 0.295 0.047
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SSLt and Q time series are calculated in order to obtain suitable input
pattern for ANN, WANN, and MLR models. The results are shown in
Table 3. The correlation coefficient (ρ) between Q and SSL, which for n
pairs are available, is defined as:

ρ =
∑
n

i=1
Qi−

�
Q

� �
SSLi−S

�
SL

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
Qi−

�
Q

� �2∑
n

i=1
SSLi−S

�
SL

� �2
s ð1Þ

where the bar denotes the mean of the variable.
The higher values of correlation coefficient, which range from 0 to

1, indicate better agreement between the variables. Tomake a suitable
selection of model input variables, the autocorrelation and cross-
correlation between the Q and SSL data were investigated. This
technique was acceptably used by Fernando and Kerr (2003). As can
be seen from Table 3, the correlation between SSLt and Qt−1 and also
the correlation between SSLt and Qt−2 are relatively high; therefore,
SSL was related to the Qt−1 and Qt−2 in the models.

It is common to use a linear method for normalization of data;
therefore, in this study the data are pre-processed by scaling them
between 0 and 1 to eliminate their dimension and to ensure that all
variables are equally given attention during calibrating and testing of
the models. The following simple linear mapping of the variables is
the most common technique for this purpose. For SSL variable with
minimum andmaximum values of SSLmin and SSLmax, respectively, the
scaled value SSLn is computed as the following:

SSLn =
SSL−SSL minð Þ

SSL max−SSL minð Þ : ð2Þ

3. Methods

3.1. Artificial neural networks

In the last two decades, the ANN approach has received a great
deal of attention as a tool of computation by many researchers. The
first fundamental concepts related to neural computing were
developed by McCulloch and Pitts (1943) and much of the ANN
activities have been centered on back-propagation and its extensions
Table 3
The correlation coefficients between measured SSLt and Q.

Time series All data Training set Testing set

Qt 0.862 0.868 0.829
Qt−1 0.451 0.46 0.402
Qt−2 0.199 0.205 0.162
Qt−3 0.134 0.138 0.109
Qt−4 0.114 0.117 0.096
(Salas et al., 2000). ANN, a massively parallel distributed information
processing system, is based on concepts derived from research on the
nature of human brains (Muller et al., 1995). A common three-layered
feed-forward neural network comprised multiple elements, called
nodes, and connection pathways that links them (Haykin, 1999). The
nodes are processing elements of the network and are normally
known as neurons. The neurons having similar properties are grouped
in one single layer. These networks are made up of an input layer
consisting of nodes representing different input variables, the hidden
layer consisting of many hidden nodes and an output layer consisting
of output variables. In the hidden and output layers, the net input to
unit i is:

yi = ∑
p

j=1
wijxj + θi ð3Þ

where wji=(w1,w2,...,wpi) is the weight vector of unit i and p is the
number of neurons in the above layer of unit i, xi is the output from
unit j and θi is the bias of unit i. This weighted sum yi; which is called
the incoming signal of unit i, is then passed through a transfer
function. A recommended literature for the ANN approach could be
Masters (1993).

3.2. Wavelet analysis

Wavelet approach is a time-dependent spectral analysis that
decomposes time-series in the time–frequency space to provide a
timescale illustration of processes and their relationships (Daubechies,
1990).Wavelet transform (WT) is a successful technique to capture the
characteristics of target time series and to detect localized phenomena
innonstationary timeseries. Thismethod is apowerful signal processing
tool used in a time series analysis. The WT is similar to the Fourier
transform, in the sense that a time series is presented as a linear
combination of some base functions. For theWT, the base functions are
translations and dilations of one function called the mother wavelet.

The current study will not delve into the theory behind wavelet
transform and only the main concepts of the discrete wavelet
transform (DWT) are briefly presented. A mathematical overview of
WT and a review of applications is presented by Labat et al. (2000).
The WT performs the decomposition of a signal into a group of
functions (Cohen and Kovacevic, 1996):

ψj;k xð Þ = 2j=2ψj;k 2 jx−k
� �

ð4Þ

where ψj, k(x) is produced from a mother wavelet ψ(x) which is
dilated by j and translated by k. The mother wavelet has to satisfy the
condition.

∫ψ xð Þdx = 0 ð5Þ
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The discrete wavelet function of a signal f(x) can be calculated as
follows:

cj;k = ∫∞

−∞
f xð Þψ�

j;k xð Þdx ð6Þ

f xð Þ = ∑
j;k

cj;kψj;k xð Þ ð7Þ

where cj, k is the approximate coefficient of a signal. The mother
wavelet is formulated from the scaling function φ(x) as:

φ xð Þ =
ffiffiffi
2

p
∑h0 nð Þφ 2x−nð Þ ð8Þ

ψ xð Þ =
ffiffiffi
2

p
∑h1 nð Þφ 2x−nð Þ ð9Þ

where h1(n)=(−1)nh0(1−n). Different sets of coefficients h0(n) can
be found corresponding to wavelet bases with various characteristics.
In the DWT, coefficients h0(n) play a critical role (Gupta and Gupta,
2007).

3.3. Multi linear regression (MLR) analysis

MLR is a technique used to model the linear relationship among a
dependent variable and one or more independent variables. The
common form of MLR is described as:

Z = a0 + ∑aiYi ð10Þ

where a0 is the intercept, ai is the regression coefficient of the
descriptor Yi, and Z is the predicted value. Determination of the values
of the parameters of the regression equation is the goal of the MLR
method. The MLR method is based on some assumptions. The
regression estimators are optimal in the sense that they are unbiased,
efficient, and consistent. Unbiased means that the expected value of
the estimator is equal to the accurate value of the parameter. Efficient
means that the estimator has a smaller variance than any other
estimator and consistent means that the bias and variance of the
estimator technique zero as the sample size approach infinity. More
detailed information for the MLR approach can be found in standard
references, such as Snedecor and Cochran (1981).

3.4. Sediment rating curve (SRC) method

A considerable part of sediment in rivers is transported as
suspension load. Most of this load consists of silt and clay, i.e. wash
load. Thus it can be concluded that wash load plays an important role
in the sediment transport in rivers (Asselman, 2000). As the finest
fraction of the SSL often is a non-capacity load, it cannot be predicted
using stream power related sediment transport models. Instead,
empirical relations such as SRCs often are applied (Asselman, 2000).
The establishment of a SRC is an important problem in hydrology. The
most common SRC is a power function (Walling, 1978). This relation
is developed by fitting a power curve between the river discharge and
SSL measured data. Commonly the SRC has the form SSL=aQb, where
a and b are constants. In the past decades, inspection was employed to
draw a curve on a graph. Recently, regression technique is usually
performed to determine parameters a and b.

There are several techniques for estimating SSL from Q in the lack
of measured SSL data (Horowitz, 2003). These techniques contain
interpolation and extrapolation with potential additional modifica-
tions using different correction factors (Holtschlag, 2001). Neverthe-
less, the basis for the most commonly employed procedure
(extrapolation) is the determination of a log–log regression, which
relates SSL to Q. The efficiency of this method is dependent on the
number of paired data points used to develop the SRC. How well the
data present the ranges of Q and SSL at a gauging station is important
too (Roberts, 1997).

3.5. Proposed wavelet-artificial neural network (WANN) combination
model

In this study, the wavelet transformwas linked to the ANNmethod
for prediction of SSL in one day ahead. The wavelet transform
technique was employed for time series analysis. The supplementary
information was used to display how the SSL periodic time series
varies as a function of time. The proposed WANN model for the
prediction of SSL is shown in Fig. 3.

To develop the WANN model, firstly measured Q and SSL time
series were decomposed to some multi-frequently time series Qd1(t),
Qd2(t),...,Qdi(t), Qa(t) and SSLd1(t),SSLd2(t),...,SSLdi(t), SSLa(t) by dis-
crete wavelet transform, whichQd1(t),Qd2(t),...,Qdi(t) and Qa(t) are the
details and approximation river discharge time series, respectively;
SSLd1(t),SSLd2(t),...,SSLdi(t) and SSLa(t) are the details and approxima-
tion SSL time series, respectively; di shows the decomposed time
series in ith level and a denotes approximate time series. Then,
decomposed Q and SSL time series at different scales were imposed to
the ANN method for predicting SSL in one day ahead.

The observed Q and SSL time series were decomposed using
mother wavelets in different levels, from 1 to 5 (i.e. into 5 wavelet
decomposition levels). For example, the level 3 decomposition of the
SSL signal which yields 4 sub-signals (approximation at level 3 and
detail at levels 1, 2, and 3) by Daubechies-2 (db2) wavelet are
presented in Fig. 4. In Fig. 4, SDW 1 is a SSL discrete wavelet at level 1,
SDW 2 is a SSL discrete wavelet at level 2, SDW 3 is a SSL discrete
wavelet at level 3, and SDW App. is a SSL discrete wavelet
approximation mode.

4. Model application

4.1. Model evaluation

It was indicated that the correlation coefficient (ρ) is unsuitable for
model evaluation (Legates and McCabe; 1999). Such researches
proposed that a perfect evaluation of model performance should
include at least one ‘goodness-of-fit’ or relative error measure (e.g.
coefficient of determination (R2)) and at least one absolute error
measure (e.g. root mean square error (RMSE) or mean absolute error
(MAE)). In this paper, the ANN, WANN, MLR, and SRC performances
were evaluated using R2, MAE, and RMSE. In brief, the models'
predictions are optimum if R2, MAE, and RMSE are found to be close to
1, 0, and 0, respectively. The R2, MAE, and RMSE performance
evaluation criteria employed in this paper can be computed utilizing
the following equations:

R2 = 1−
∑
n

i=1
SSLi measuredð Þ−SSLi predictedð Þ

� �2

∑
n

i=1
SSLi measuredð Þ−SSLi meanð Þ

� �2
ð11Þ

MAE =
∑
n

i=1
jSSLi measuredð Þ−SSLi predictedð Þj

n
ð12Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i=1
SSLi measuredð Þ−SSLi predictedð Þ

� �2

n

vuuut
ð13Þ

in which n is the number of data points.
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Fig. 3. Structure of the proposed WANN combination model.
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4.2. Application of ANN and WANN models

A three layer feed forward neural network (FFNN) with back-
propagation (BP) algorithm (Masters, 1993; Haykin, 1999) which
contains one input layer, one hidden layer, and one output layer was
applied in this research. The standard multilayer FFNN with just one
hidden layer using arbitrary squashing functions is capable of
approximating any function from one finite dimensional space to
another in any desired degree of accuracy, provided sufficiently many
hidden units are available. In this sense, multilayer FFNNs are a class of
universal approximators (Hornik et al., 1989). The BP algorithm is a
gradient descent procedure employed to minimize a least-square
objective function (error function). The Levenberg–Marquardt algo-
rithm (Haykin, 1999) was employed to train ANN models. Consider-
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Fig. 5. a) Haar wavelet. b) Db2 wavelet. c) Coif1 wavelet. d) Meyer wavelet.
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employed function is the Sigmoid function. This function is differen-
tiable, continuous, and monotonically increasing in its domain. The
Sigmoid and Tansig (Schmitz et al., 2006) functions were used as
activation functions in hidden and output layers' nodes to make an
ANN model more effective. The application of ANN for predicting SSL
consists of two steps. The first step is training ANN models and the
second one is testing the models. In ANN modeling, two important
items should be considered: the ANN structure and the training
iteration number (epoch). Appropriate selection of two mentioned
items, can progress the model efficiency in both steps of calibration
and verification. In addition, it prevents the ANN model to be over
trained. In this research, it was concluded that 400 epochs satisfy
training network considering 10−5 as goal performance. In ANN
models, another critical point is determining the number of neurons
in input and hidden layers, which provides the best training results.
However, there is no specific algorithm to determine the number of
required neurons in hidden layer for simulating functions. The
number of neurons in the hidden layer, with variation between 2
and 16 was investigated for each input combinations (1–6). Once the
training stage was completed, the testing stage begins using the
optimum values found for the number of neurons in each input layer
and hidden layer. The optimum learning rate, η, and the momentum,
α, were obtained after trying different values and observing the RMSE
produced at the end of the verification step. It was observed that
picking high values like 0.6 and 0.9 for η and α, respectively, as done
by Raman and Sunilkumar (1995), throws the network into oscilla-
tions or saturates the node outputs. In this paper, it was found that 0.2
and 0.1 are adequate values for η and α, respectively.

In the WANN model, the decomposed SSL and Q time series were
entered to the ANN method for prediction of SSL in one day ahead
(Fig. 3). For this purpose the dyadic discrete wavelet transforms
were used (Mallat, 1989). The number of nodes in the input layer
is determined with (i+1)×2; because the WANN combination model
uses two variables (SSL and Q) and each time series is decomposed into
i, i=(1,2,...,5) details time series and one approximation time series.

TheWANNmodel employs discrete wavelet transform to overcome
the difficulties associated with the conventional ANN model. The
wavelet technique can divide the SSL time series properties into various
scales of wavelet transform at the same time. Correlation analysis (that
is considered in ANNmodel inputs) provides information on the global
functioningof SSL time series, but cannot take the temporal variability of
the time series into account, which often leads to a nonlinear and non-
stationary functioning of the presses. So, the wavelet approach was
Table 4
R2, MAE, and RMSE values in SSL prediction by ANN, MLR, and SRC models in the testing p

Models ANN

Combination 1 2 3 4 5

ANNs: Neurons in hidden layer 4 7 6 2 7
R2 0.261 0.317 0.341 0.264 0.414
RMSE (ton/day) 6117.8 5880.8 5778.2 6107 5446.6
MAE (ton/day) 1526.2 1503.2 1452.8 1602.6 1414.8
presented to focus on the non-stationary properties of time series. The
unknown periodical characteristics of SSL time series could be detected
using the WANN model.

An important step of wavelet analysis is to select an appropriate
wavelet function called “mother wavelet” and then perform analysis
using shifted and dilated version of this wavelet. In this study, it was
intended to investigate the effects of the employed wavelet type as
well as decomposition level on the WANN model efficiency. To
achieve this purpose, the SSL and Q time series were decomposed to 1,
2, 3, 4, and 5 levels by seven different kinds of wavelet transforms, i.e.
Haar wavelet (a simple wavelet), Daubechies-2 (db2)wavelet (amost
popular wavelet) (Mallat, 1989), and some irregular wavelets such as
sym1, bior1.1, rboi1.1, Meyer, and coif1 wavelet. For instance, Haar,
db2, coif1, and Meyer wavelets are shown in Fig. 5. In this study not
only the sensitivity of the pre-processing to the wavelet type and
decomposition level is investigated but also the effect of number of
inputs is examined as a multivariate simulation.

In the case that the accuracy of the different kinds of wavelet
transforms is sufficient, all periodical properties of SSL time series and
their role in theSSL phenomenonwill be considered in theWANNmodel.

4.3. Application of MLR and SRC models

MLR and SRC methods were employed to model the relationship
between the input variables and the SSL. Six MLR models with the
same input combinations from the ANN model, were established. The
developed regression equations were referred to as trained models.
Then the predictive ability of the models was also tested with the
same data sets employed for testing the ANN models. Therefore, the
results are comparable.

The SRC model is carried out considering the following power law
equation:

SSL = 6 × 10−14Q2:3496
: ð14Þ

5. Results and discussion

The prediction is performed by ANN, MLR, and SRC models for all
input combinations and the results are presented in Table 4.

According to Table 4, the ANN and MLR models provided the best
performance criteria for combination 5 and combination 3, respec-
tively. In combination 5 (SSLt, SSLt−1, Qt), the ANN structure was ANN
eriod.

MLR SRC

6 1 2 3 4 5 6 –

4 – – – – – – –

0.349 0.21 0.219 0.224 0.209 0.209 0.199 0.09
5743.9 6325.1 6289.4 6269.8 6331.6 6329.9 6371.2 6813.3
1598.7 1948.5 2020.6 1985.2 1988.2 1654.3 1647.1 1736.2



Table 5
R2, RMSE and MAE in SSL prediction by the WANN model in the testing period.

Mother wavelet
type

Decomposition
level

ANN
structure

R2 RMSE
(ton/day)

MAE
(ton/day)

Coif 1 1 4-1-1 0.744 3601.1 1149.6
Bior 1.1 3 8-2-1 0.527 4893.9 1167.3
Db 2 2 6-1-1 0.554 4751.8 1099.7
Meyer⁎ 2 6-4-1 0.83 2935.1 898.3
Haar 1 2 6-4-1 0.632 4321 1021.7
Rbio 1.1 2 6-1-1 0.549 4779.3 1093.2
Sym 1 2 6-2-1 0.592 4548.8 1068
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(3, 7, 1) representing 3, 7, and 1 input, hidden, and output neurons,
respectively. The best MLR model used SSLt, SSLt−1, SSLt−2 as inde-
pendent variables and SSLt+1 as dependent variable. In the ANN
model, considerable improvements in the model performance was
not found when the number of hidden neurons was increasing from a
threshold, which is in accordance to the investigations reported by
Abrahart and See (2000).

When multilevel sub-signals are entered in the WANN as input
nodes, their assigned weights by the ANN method will be different at
different decomposition levels; therefore, high weights will be
applied to the high levels of the time series. For instance, in using
order two for decomposition level, which yields three sub-signals for
both Q and SSL time series, SSLt+1 is more relevant to Qd2(t) rather
ct-86
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than Qd1(t) because Qd2(t) (detail sub-signal of Q) is a short period
in Q time series and has an important role in SSL prediction at time
t+1(SSLt+1). Therefore, the network magnifies its weight as com-
paratively as the other sub-signals.

In general, di can be substituted by different values. Considering
direct relation amongQ andSSL values, it is expected that bothQ and SSL
time series have the same seasonal levels. Therefore, decomposition
levels for river discharge (Qdi) and SSL (SSLdi) time series have been
considered equal. Obtained results by theWANNmodel, illustrated that
by increasing the decomposition level, in levels greater than 2, the
model performance is decreased because high decomposition levels
lead to a large number of parameters with complex nonlinear relation-
ships in the ANN approach. Although this relationshipmaymonitor and
fit the training data, each parameter creates an error in predicting data,
consequently net errors decrease model performance. The level 2 can
be considered as an appropriate decomposition level for the data but
decomposition levels greater than two lead to low efficiency.

In the WANN model, long, intermediate, and short levels might be
considered by selecting decomposition levels for Q and SSL time
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Fig. 7. Sediment graphs, hydrographs and hysteresis relations betwee
series. The proposed model not only pre-processes and partitions the
SSL signal to effective calibrated time series, but also considers the
influence of each sub-time series by magnifying its weight relatively.
The performance of the WANN model is presented in Table 5.

In the structure of Meyer wavelet, Fig. 5d, which is similar to the
SSL signal, the SSL signal features, especially its peaks could be
considered. Consequently comparatively high performance is
achieved. According to Tables 4 and 5, the R2, MAE, and RMSE for
the ANNmodel were in the ranges of 0.261 to 0.414, 1414.8 to 1602.6,
and 5446.6 to 6117.8, respectively. The mentioned statistical para-
meters were in the ranges of 0.199 to 0.224, 1647.1 to 2020.6, and
6269.8 to 6371.2, respectively for the MLR model. For the SRC model,
the mentioned parameters were 0.09, 1736.2, and 6813.3, respective-
ly and the mentioned parameters were in the ranges of 0.527 to 0.83,
898.3 to 1167.3, and 2935.1 to 4893.9, respectively for the WANN
model. The values of MAE and RMSE forWANN and ANNmodels were
smaller than the values of these parameters for MLR and SRC models.
Besides, R2 for the intelligence models was more than R2 for the
conventional models.
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According to Tables 4 and 5, the best WANN model improved RMSE
by 46.1%, 53.2%, and 84.4% in comparison to the best ANN,MLR, and SRC
models, respectively. Because of employing the ANN technique for
reconstruction of the time series, the proposedWANNmodel has a non-
linear kernel; therefore, it can simulate the complex non-linear
characteristics of the SSL phenomenon more accurately than the other
linear models such as SRC and MLR. Results showed that the WANN
model,which useddecomposeddata, had illustrated better performance
than other models which employed row data. The SRC andMLRmodels
consider linear regression among the variables; therefore, these
approaches were not appropriate for handling the nonlinearity and
complexity of the SSL phenomenon. Some modifications could be
applied in order to increase the accuracy of the SRC method (e.g. using
differentfitted curves). Since just twocalibratedparameters (i.e. a andb)
were used, it was not expected that the outputs of themodel could rival
the artificial intelligence approaches results. In contrast to regression-
based models, intelligence-based models use the advantage of multiple
adjustable parameters and configurations; therefore, they are prone to
problems of overfitting. Using time series plots, in Fig. 6, the predicted
SSL values with the observed ones for testing period are compared.

As can be seen from Fig. 6, in the WANNmodel the SSL values were
slightly underestimated during high SSL periods and fluctuated around
the1:1 line (in the scatter-plot)during lowSSLperiods. According to the
scatter-plots, a comparisonbetweenWANNandothermodels obviously
showed a significantly better performance of the former models. The
discrete wavelet transform captures the dynamic properties of the
nonlinear and non-stationary SSL time series usingwavelet coefficients.
The WANN is employed to include intelligent evaluation through a
neural network model so as to extract useful features from discrete
wavelet coefficients for obtaining effective components regarding SSL
prediction. It could be seen that the wavelet analysis was extremely
useful when it was used in SSL time series to extract important
characteristics embedded in the SSL signal. The stated results indicated
Table 6
Evaluation of models in SSL prediction based on the testing period for values greater than

Row Date Observed (ton/day) ANN (ton

1 29-May-84 120,598.9 8954.7
2 02-Mar-87 105,796.8 120,598.9
3 11-Apr-83 97,511 120,598.8
4 25-Dec-86 79,814.6 2617.6
5 03-Feb-83 77,500.8 15,096.9
6 25-Apr-87 74,753.3 28,890.7
7 01-Mar-87 64,689.4 13,187.4
8 10-Apr-83 57,723.8 2235.6
9 18-Aug-85 57,428.4 704.9
10 30-May-84 53,369.3 56,938.2
11 08-Sep-87 50,067.1 10,986.7
R2 −5.6
MAE (ton/day) 49,214.6
RMSE (ton/day) 56,939
that the developed model could be an effective method in SSL
prediction. In the following sections, several approaches such as
hysteresis analysis, cumulative SSL estimation and prediction of high
SSL values are used for evaluation of the models' performances.

5.1. Hysteresis analysis

Rivers are known to exhibit hysteresis in SSL (Horowitz, 2008),
whereby SSL is greater on the rising limb of the hydrograph than on
the falling limb. Besides the river sediment, the hysteresis event is
noticed in other hydrologic processes too, for example, the soil
moisture retention curve and the flood wave curve. Asselman (2000),
Yang et al. (2007), and Jain (2008) mentioned the hysteresis in
sediment process and presented the various models' performances in
capturing this phenomenon.

Since the ANN and WANN models are powerful techniques for
complex and nonlinear function mapping, this part deals with the
application of these models to set up hysteresis phenomenon. The
storms of May 26th, 1984, August 16th, 1985, and April 23rd, 1987
were selected for the hysteresis analysis in the testing period. The
hydrographs, sediment graphs and rating loops of the selected storms
are shown in Fig. 7. Moreover, the ANN,WANN, and SRC performances
in simulation of hysteresis phenomenon are presented in Fig. 7.

According to Fig. 7, the peaks of SSL graphs precede the
hydrograph peaks. The rating loops show hysteresis with a greater
SSL for a given Q occurring on the rising limb rather than on the falling
limb. Horowitz (2008) stated that the maximum SSL usually occurs
prior to the peak Q. Clockwise (positive) hysteresis loops are observed
for all storms, which strongly suggest that the progressive decline
mechanism is dominant in sediment supply in the watershed.
Clockwise trend of all floods is owing to the washout of fine loose
material from in-channel erosion. A probable cause of positive
hysteresis in the study area is depletion of available sediment before
the peak of water discharge (e.g. Williams, 1989; Sayer et al., 2006).

The hysteresis simulations by the provided models were con-
ducted to recognize rating loops using three storm events that
occurred in the verification period. As seen in Fig. 7, the WANNmodel
simulated the hysteresis event better than the other models. The ANN
model simulated the hysteresis only in one event (i.e. April 23rd,
1987), while the SRC model was not able to simulate the hysteresis
phenomenon. In the SRC method, SSL increased as a result of
discharge's increase, which is due to the used power law between
them. Amajor limitation of the SRC technique is that it was not able to
take into account the hysteresis influence.

5.2. Cumulative SSL estimation

Sediment load computations are often the first step in river
engineering and reservoir management. Also, the accurate estimation
50,000 (ton/day).

/day) WANN (ton/day) MLR (ton/day) SRC (ton/day)

103,749.4 6158.4 107,515.3
101,167.6 39,206.5 717,523.4
76,230.1 35,764.3 348,607.2
69,219.6 1655.4 37,628.5
61,584.7 6822.5 69,814.9
97,594.6 26,315.2 274,659.8
62,522.1 4389.8 144,649.8
29,696.5 1986.3 52,667.1
65,508.9 1283.2 21,454.9
56,823.6 72,545.9 175,870.7
34,584.1 4222.1 37,031.2

7 0.485 −7.82 −92.88
13,575 61,568.8 125,655.7
15,819.1 65,476.3 213,652.4



0

30000

60000

90000

120000

150000

0 30000 60000 90000 120000 150000

Observed SSL (ton/day)

P
re

di
ct

ed
 S

S
L 

(t
on

/d
ay

)

ANN WANN MLR SRC

Fig. 9. Observed and predicted SSL in the testing period for SSL values greater than
50,000 (ton/day).

2927T. Rajaee / Science of the Total Environment 409 (2011) 2917–2928
of sediment load is essential for the design and operation of dams,
canals, and diversions. Since management decisions depend on
sediment load computations, information about annual sediment load
becomes a priority. In this study, the cumulative SSLwas estimated3.21,
3.32, 3.71, and 5.17 Mtonnes by ANN, WANN, MLR, and SRC models,
respectively, while the measured value was 3.2 Mtonnes in the testing
period. The ANN, WANN, MLR, and SRC models were overestimated by
0.5%, 3.9%, 16.02%, and 161.8%, respectively. The estimated cumulative
SSL by the ANN and WANN models were closer to the observed data
than theMLR and SRCmodels.Walling (1977) indicated that the annual
sediment loads computed by employing a single SRC may involve
overestimation by up to 60%. The SRC model considerably over-
estimated the cumulative SSL. The result is in accordance to the
investigations reported by Walling (1977). Consequently, the SRC
method cannot reasonably estimate the cumulative SSL. Measured and
predicted cumulative SSL for the testing period are shown in Fig. 8.

5.3. Prediction of high SSL values

In this part of the study, prediction of high SSL values is performed
by the models. The threshold for the SSL is taken as 50,000 (ton/day)
and the results are presented in Table 6. The WANN model improved
RMSE by 72.2%, 75.8%, and 92.6%, in comparison to the ANN, MLR, and
SRC models, respectively.

Scatter plot of observed and predicted SSL obtained by all models
for values greater than 50,000 (ton/day) is shown in Fig. 9. It was
obvious that the WANN model prediction was closer to the 1:1 line
than those predicted by the other models. The other models
underestimated the SSL in all domains.

6. Summary and conclusion

An attempt was made in this paper to investigate the use of a
hybrid WANN model for daily suspended sediment load prediction in
Yadkin River at Yadkin College station in the USA. By utilizing an
effective characteristic of wavelet analysis, i.e. discrete wavelet
transform, with the concepts of neural networks, a new wavelet
artificial neural network model was developed for SSL simulation in
the river. In the provided model, the discharge and SSL signals were
firstly decomposed into sub-signals with different scales, i.e. a large-
scale sub-signal and several small-scale sub-signals in order to obtain
temporal properties of the input time series. The decomposed SSL and
Q time series were entered to the ANNmethod for prediction of SSL in
one day ahead.

The comparison of the prediction accuracies of the WANN and
other models indicated that the proposedWANNmodel could predict
SSL time series because of using multi-scale time series of discharge
and SSL data as the ANN input layer. Furthermore, the results showed
that the proposed model could satisfactorily simulate hysteresis
phenomenon, acceptably estimate cumulative SSL, and reasonably
predict high SSL values. Thus wavelet and ANN combination model
can be used as a useful approach for SSL time series modeling.

Data pre-processing method warrants further studies. It should be
noted that generally in rivers, including Yadkin River, river discharge
and SSL time series are characterized by high non-stationarity and
non-linearity. ANN models may become unable to predict SSL due to
these features, if pre-processing of the input and/or output data is not
performed. Tests undertaken on preprocessed data, using a wavelet
transformation, presented that the best results were obtained when
theWANNmodel calibrated using a single ANN on the approximation
coefficients at level two. In general, these results indicate a promising
role of discrete wavelet transforms in SSL time series prediction.

In this research, a combined WANN intelligent model for
prediction of SSL time series in rivers was proposed. Applying the
methods developed in this study to the other phenomena requires
more research. Using the presented approaches to predict the SSL in
second, third or other following days and modeling SSL process by
considering other variables (e.g. temperature or precipitation inten-
sity) is suggested to improve the current study. Furthermore, as a plan
for future studies, the presented methods can be used to simulate
monthly and event based SSL time series.
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